

Review Article

Therapeutic Potential of *Withania somnifera* (L.) Dunal (Ashwagandha) in Neuronal Plasticity and Recovery after Stroke

Subendu Sarkar^{1*} , Arvind Duhan², Mayank Srivastava³, Rajender Pal Singh⁴, Shilpa Chaudhary⁵, Abhishek Singh⁶ and Sandeep Kumar Saxena⁷

¹Central Research Laboratory, ESIC Medical College and Hospital, Faridabad, Haryana, India; ²Department of Ayurveda and Panchakarma, ESIC Medical College and Hospital, Faridabad, Haryana, India; ³Department of Neurology, ESIC Medical College and Hospital, Faridabad, Haryana, India; ⁴Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; ⁵Department of Pharmacology, ESIC Medical College and Hospital, Faridabad, Haryana, India; ⁶Department of Ayurveda Samhita and Siddhant, Goel Ayurvedic Medical College & Hospital, Lucknow, Uttar Pradesh, India; ⁷Department of Rog Nidana Avum Vikriti Vigyan, Shaheed Kartar Singh Sarabha Ayurvedic Medical College & Hospital, Sarabha, Ludhiana, Punjab, India

Received: September 16, 2025 | Revised: February 01, 2026 | Accepted: February 04, 2026 | Published online: February 14, 2026

Abstract

The incidence and mortality of stroke are gradually increasing. In this context, post-stroke neuronal loss and the related long-term complications, along with costly treatment strategies, are significant concerns for healthcare professionals, and effective, convenient, and inexpensive therapeutic modalities are required. Natural and easily accessible herbal remedies may be the optimal option in post-stroke recovery. This narrative review aims to summarize the neuroprotective properties of *Withania somnifera* (Ashwagandha) and its therapeutic efficacy in neuronal plasticity and recovery after stroke. Original research articles, reviews, and case studies were sourced from databases such as PubMed, Web of Science, Scopus, Google Scholar, Medline, and Embase. Only full articles published in English up to July 2025 were considered. Keywords including *W. somnifera*, Ashwagandha, stroke, cerebral ischemia, neurodegeneration, neuronal loss, and post-stroke recovery were utilized for the literature search. It has been found that various plant parts of *W. somnifera* are abundant in bioactive compounds. The neuroprotective effects of *W. somnifera* are documented in numerous diseases. Nevertheless, *W. somnifera* is reported to be involved in modulating various biological pathways to mitigate neuroinflammation, apoptosis, and oxidative stress in stroke. *W. somnifera* promotes cell proliferation and enhances neurogenesis. Preclinical experiments on murine models show the effectiveness of *W. somnifera* in post-stroke recovery by enhancing neural plasticity and reducing neuronal loss in the infarct area. Furthermore, *W. somnifera* boosts neurotransmitter levels, improves motor functions, and enhances memory. It also decreases neutrophil infiltration in the infarct region and lessens neuronal loss. Therefore, the application of *W. somnifera* may prove advantageous in facilitating post-stroke recovery by enhancing neural function. However, well-designed clinical trials are needed to confirm the efficacy of *W. somnifera* in post-stroke recovery in humans.

Introduction

Acute stroke is characterized by the abrupt onset of significant im-

pairment of the nervous system within a vascular area that affects the brain, spinal cord, and retina, stemming from underlying cerebrovascular disorders.¹ Stroke is prevalent among diverse patient populations and can result in substantial morbidity and mortality. Strokes are categorized into two primary types: ischemic and hemorrhagic. Hemorrhagic strokes can be further classified into intracerebral and subarachnoid hemorrhages. Ischemic stroke occurs due to the obstruction of blood vessels, while hemorrhagic stroke is attributed to the rupture of blood vessels or bleeding within the brain. Subarachnoid hemorrhage refers to bleeding in the area surrounding the brain, whereas intracerebral hemorrhage pertains to bleeding that occurs within the brain tissue itself. The

Keywords: *Withania somnifera*; Ashwagandha; Stroke; Cerebral ischemia; Neurodegeneration; Neuronal loss; Post-stroke recovery.

Correspondence to: Subendu Sarkar, ESIC Medical College and Hospital, NH-3, NIT, Faridabad, Haryana 121001, India. ORCID: <https://orcid.org/0000-0002-0706-6374>. Tel: +91-9780035644, E-mail: drsubendus@gmail.com

How to cite this article: Sarkar S, Duhan A, Srivastava M, Singh RP, Chaudhary S, Singh A, et al. Therapeutic Potential of *Withania somnifera* (L.) Dunal (Ashwagandha) in Neuronal Plasticity and Recovery after Stroke. *Explor Res Hypothesis Med* 2026;11(2):e00048. doi: 10.14218/ERHM.2025.00048.

incidence of stroke has significantly increased from 1990 to 2021, with a 70.0% rise in prevalence and a 44.0% increase in mortality rates.² Additionally, the global cost of managing stroke patients is quite high.

The risk factors for stroke include non-modifiable and modifiable factors. Gender, age, sex, and genetic factors are non-modifiable risk factors.³ Obesity, hypertension, diabetes, improper diet, atrial fibrillation, and smoking and alcohol consumption are modifiable risk factors. The pathophysiology of ischemic and hemorrhagic stroke leads to cellular and physiological alterations, which include neuroinflammation, increased oxidative stress, excitotoxicity, and angiopathy. Post-stroke neuroinflammation causes glial cell activation, increased leukocyte infiltration, blood–brain barrier breakdown, and increased cytokine production. Oxidative stress-induced tissue damage includes mitochondrial dysfunction, increased reactive oxygen species formation and lipid peroxidation, and reduced ATP synthesis. In addition, increased cellular $\text{Ca}^{2+}/\text{Na}^+$ influx, reduced glutamate uptake, and necrosis lead to excitotoxicity. Furthermore, post-stroke pathophysiology includes interrupted blood flow, cerebral edema, and elevated intracranial pressure. These cellular and physiological alterations ultimately lead to cerebral damage and neuronal death.⁴

A variety of complications are associated with stroke patients, including post-stroke seizures, mobility disabilities, hemiplegic pain, cognitive deficits, emotional fluctuations, and depression.⁵ The strategies for post-stroke treatment depend on prehospital patient care, emergency diagnostic assessments, and intravenous and intra-arterial therapies.⁶ Nevertheless, extensive research is currently being conducted to investigate the effectiveness of natural and readily available herbal remedies and Ayurveda for the recovery of neural damage.⁷ *W. somnifera* is a potential medicinal plant that is used traditionally in Ayurveda. It has numerous therapeutic applications to prevent inflammation, cancer, diabetes, microbial infection, etc. However, extensive research shows that *W. somnifera* is effective against neurodegenerative diseases.⁸ The administration of root powder in a rat model demonstrates enhancements in post-traumatic stress disorder, as well as in memory impairments induced by post-traumatic stress disorder in the hippocampus.⁹ *W. somnifera* has gained significant attention for its potential in addressing post-stroke complications due to its remarkable neuroprotective properties.¹⁰ Additionally, *W. somnifera* extract significantly improves cognitive impairments and reaction time.¹¹ The present article aims to elucidate the role of *W. somnifera* in post-stroke recovery by enhancing neural functions.

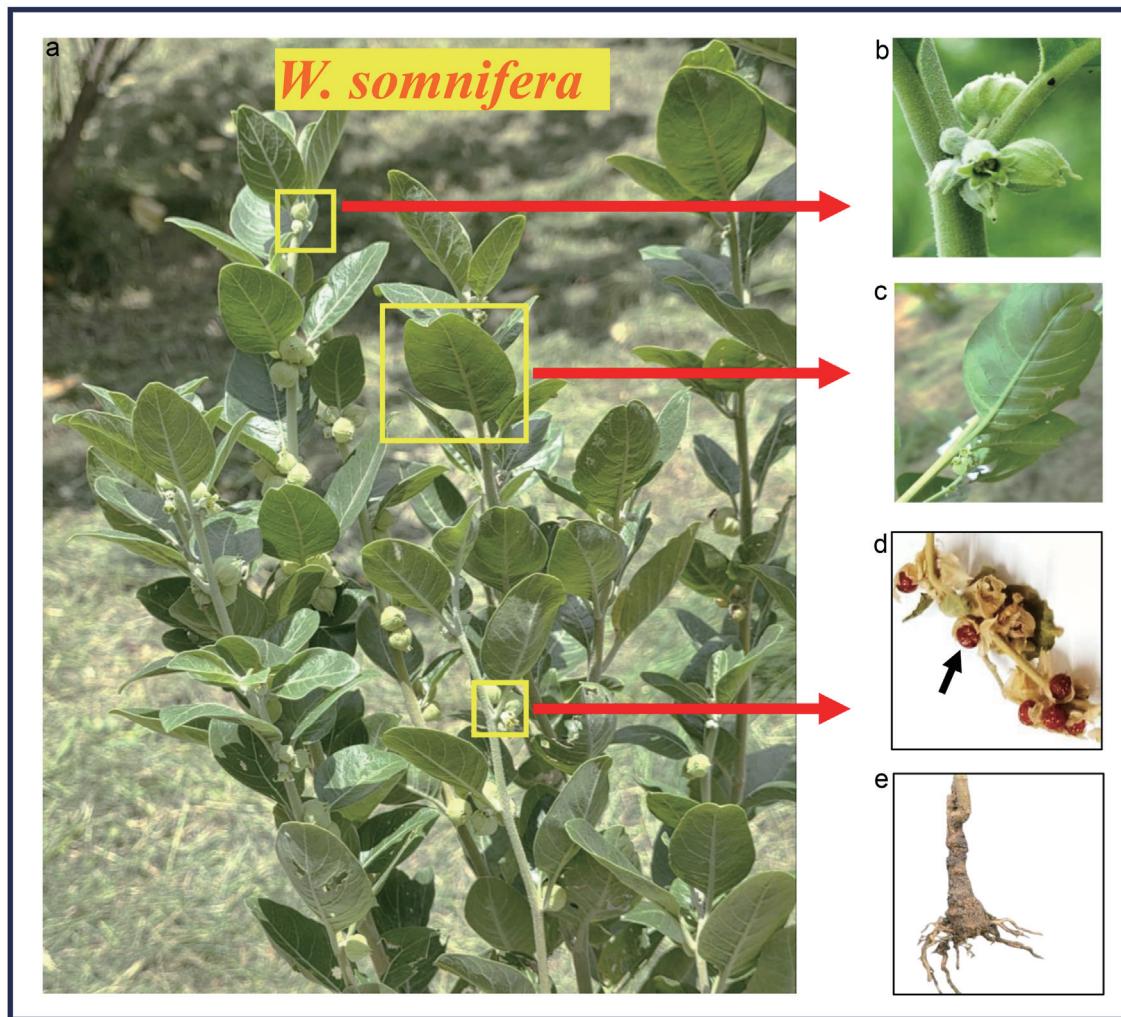
Data curation

Peer-reviewed research articles, such as original research articles, reviews, and case studies, were obtained from databases including PubMed, Web of Science, Scopus, Google Scholar, Medline, and Embase. Only full-length articles published in the English language up to July 2025 were included in this study. The searching strategy included keywords such as *W. somnifera*, Ashwagandha, stroke, cerebral ischemia, neurodegeneration, neuronal loss, and post-stroke recovery, which were employed for literature searches.

Botanical and taxonomical description of *W. somnifera*

W. somnifera, commonly known as Ashwagandha, Indian ginseng, winter cherry, and suranjan, flourishes extensively in areas such as India, Africa, Sri Lanka, Pakistan, and the Mediterranean (Fig.

1).¹² This species, *W. somnifera*, is classified under the family Solanaceae and the genus *Withania*. The growth of this crop necessitates semi-tropical climates characterized by an annual rainfall of 650–750 mm and an optimal temperature range of 20°C to 35°C. Every part of the plant, including the leaves, bark, stem, seeds, and flowers, is rich in various phytochemicals that may enhance neuronal function (Table 1).^{12,13–17} A recent study has reported the cytotoxic effect of a single bioactive compound, withaferin A, at a minimum concentration of 0.6 μM on SH-SY5Y cells.¹⁸ Nevertheless, the hydroalcoholic extract of *W. somnifera* root, administered at a dosage of 2,000 mg/kg body weight per day, has been demonstrated to be safe, as evidenced in Wistar rats.¹⁹ Thus, normalization of dose is crucial for the safe application of *W. somnifera* phytochemicals and therapeutic accuracy.


Pathophysiology of stroke

Stroke is the second leading cause of death globally and a significant contributor to disability. Considerable advancements have been made in stroke research through various *in vivo* and *in vitro* studies aimed at elucidating the underlying mechanisms of stroke pathogenesis.²⁰ A stroke is characterized by a sudden and unforeseen alteration in neurological function resulting from impaired blood flow to the brain. The primary blood supply to the brain is facilitated by the circle of Willis, which comprises two anterior, two middle, and two posterior cerebral arteries, in addition to the anterior and posterior communicating arteries. Ischemic stroke, which occurs due to insufficient blood and oxygen supply to the brain, accounts for 85% of strokes, in contrast to hemorrhagic stroke, which accounts for 10%–15%. The obstruction of blood vessels in the brain may result from plaque buildup or blood clots. Localized blood clot formation is referred to as thrombosis, while a movable clot is termed embolism.

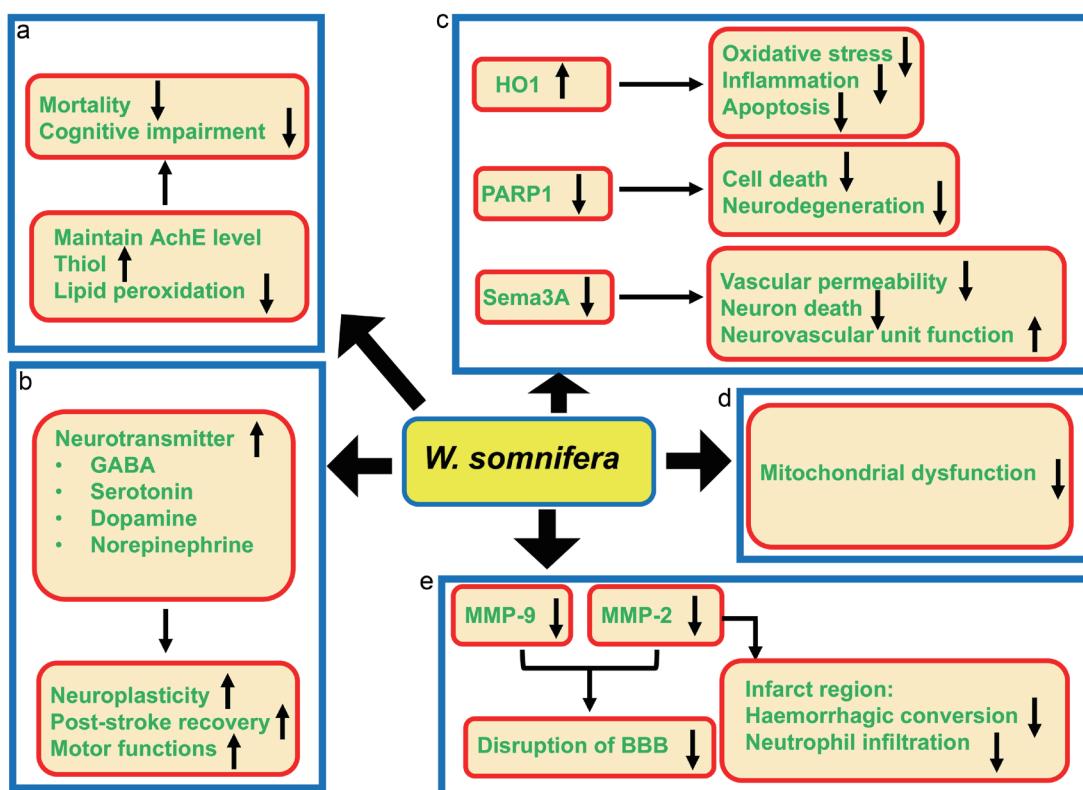
In atherosclerosis, plaque accumulates on the inner walls of arteries, leading to the narrowing of blood vessels. This results in diminished blood flow, reduced oxygen supply to brain tissue, increased stress, and ultimately cell death or necrosis. Necrosis causes the leakage of cellular debris into the extracellular space, resulting in the loss of neural functions. Neuroinflammation is a significant biological response observed following a stroke. This process involves the activation of resident immune cells (microglia), which is modulated by fibroblast growth factors. These cells subsequently release proinflammatory and anti-inflammatory cytokines, leading to neural damage.²¹ Furthermore, increased oxidative stress contributes to the formation of cerebral edema. Additionally, excessive influx of Ca^{2+} and Na^+ ions into neurons may lead to cellular damage. Dysfunction of the blood–brain barrier may be observed in both ischemic and hemorrhagic strokes, serving as a major factor in the functional loss of neurons.²² However, blood–brain barrier disruption in the case of ischemic strokes is mediated by acute hyperpermeability largely due to MMP-9,²³ while hemorrhagic strokes often exhibit delayed or subtype-specific disruption.²⁰

Neuroprotective functions of *W. somnifera*

Extensive studies have been conducted to investigate the neuroprotective properties of *W. somnifera*. It has been observed that *W. somnifera* facilitates the recovery of neurons by reducing inflammation, oxidative stress, and apoptosis, while also promoting cell proliferation and neurogenesis. Furthermore, *W. somnifera* mitigates oxidative stress by reducing the production of free radi-

Fig. 1. Different plant parts of *W. somnifera*. (a) whole plant, (b) flower, (c) leaf, (d) fruit, and (e) root.

cals, reactive oxygen species, and lipid peroxidation. Additionally, it enhances the activity of superoxide dismutase and catalase. *W. somnifera* also bolsters antioxidant defense by elevating levels of vitamins A, C, and E, as well as essential metal ions such as Cu^{2+} , Fe^{2+} , and Zn^{2+} .¹³


Various parts of the *W. somnifera* plant, including the root, leaf, fruit, shoots, and bark, are abundant in active constituents and secondary metabolites such as alkaloids, flavonoids, phenolics, saponins, steroids, and glycosides (Table 1).²⁴ It possesses a diverse array of withanolide alkaloids that are potentially associated with the activation of the cytoprotective PI3K/mTOR pathway, as well as the reduction of inflammation and oxidative stress.¹² *W. somnifera* counteracts the effects of β -amyloid₁₋₄₂ and modulates acetylcholine and acetylcholinesterase (AChE), thereby decreasing neurotoxicity.²⁵ The bioactive compounds found in *W. somnifera*, including stigmasterol, withaferin A, withanolide G, and withanolide B, exhibit a strong binding affinity for PARP-1. In this context, the inhibition of PARP-1 is associated with a decrease in neuronal cell death.²⁶ The advantageous effects of *W. somnifera* against various neurological disorders, such as schizophrenia, Huntington's disease, Parkinson's disease, and Alzheimer's disease, have already been documented.²⁷

Roles of *W. somnifera* in post-stroke pathophysiology

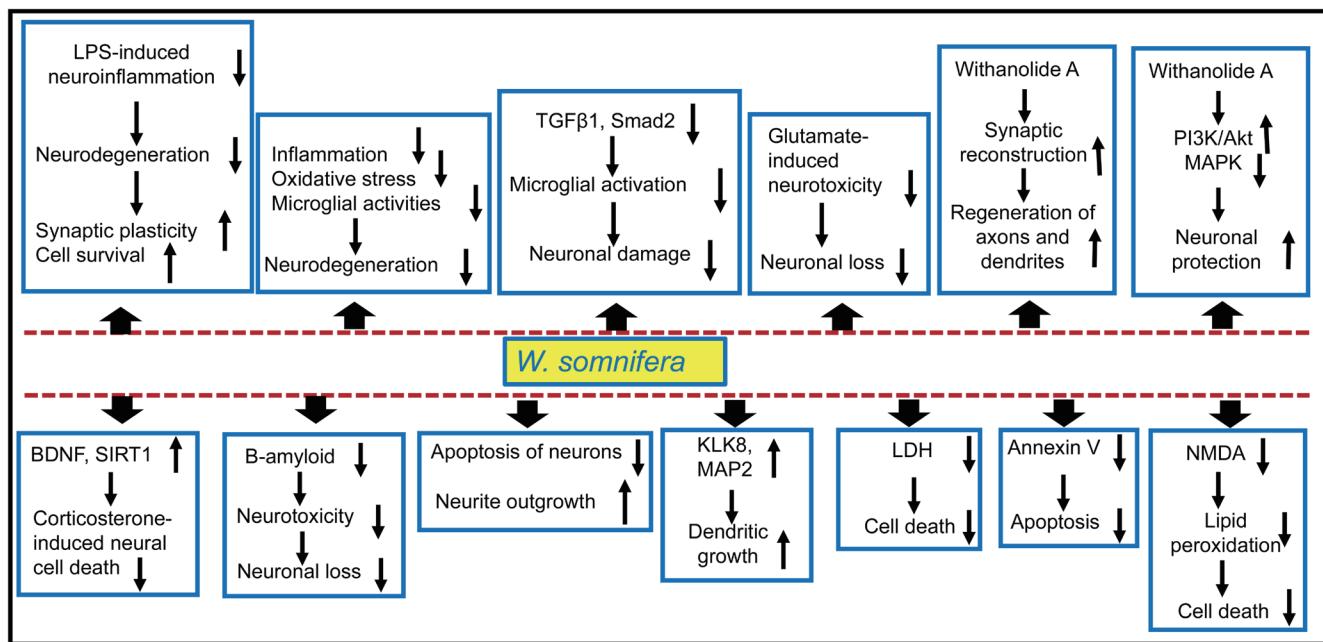

Various studies have already been conducted demonstrating the beneficial effects of *W. somnifera* in the recovery of stroke outcomes (Fig. 2). Mice subjected to middle cerebral artery occlusion (MCAO) exhibit significant recovery in the infarct region when treated with an aqueous extract of *W. somnifera*.²⁸ This research indicates that *W. somnifera* can modulate the expression of key proteins associated with the ischemic-apoptotic cascade. The administration of a root extract of *W. somnifera* (200 mg/kg body weight) in C57BL/6 mice following permanent distal MCAO in the contralateral cortex demonstrates a significantly reduced infarct volume in the *W. somnifera* pre-treatment group compared to the vehicle group ($23.1 \pm 3.4\%$ versus $35.5 \pm 2.5\%$). Furthermore, the *W. somnifera*-pretreated mice exhibit enhanced locomotor activity after 24 h and one week, indicating a potential for functional recovery following MCAO.²⁸ *W. somnifera* enhances the expression of HO-1 while reducing levels of PARP-1 and Sema3A. HO-1 plays a crucial role in ischemic stroke through its antioxidant, anti-inflammatory, and antiapoptotic properties.²⁹ Among the downstream products of HO-1, previous studies have reported a reciprocal relationship between serum bilirubin levels

Table 1. List of phytochemicals reported in different plant parts of *W. somnifera*

Plant parts	Name of phytochemicals	Reference
Root	Basic alkaloids: anahgrine, cuscohygrine, pseudotropine, tropine, anaferine, isopelletierine, pseudo-withanine, withananinine, withananine somnine, somniferine, somniferinine. Neutral alkaloids: 3-tropyltiglate. Other alkaloids: Withasomnine, withanine, and visamine. Free amino acids: Glycine, alanine, tyrosine, proline, cystine, glutamic acid, tryptophan, and aspartic acid	13
Leaf	Withanolides, alkaloids, free amino acids, chlorogenic acid, glycosides, glucose, condensed tannins, and flavonoids, withaferin A	13
Fruit	Condensed tannins, proteolytic enzymes, and flavonoids. Alanine, glycine, proline, valine, glutamic acid, cystine, tyrosine, hydroxyproline, aspartic acid, and cysteine	13
Shoots	Crude protein, calcium and phosphorous, Coumarin: scopoletin	13
Stem	Condensed tannins and flavonoids	13
Bark	Free amino acids	13
Root	Steroids, Terpenoids, Alkaloids, Flavonoids, Tannins, Phenol, Anthraquinone, Catechin	14
Root	withanolide A, 12-deoxywithastramonolide and withaferin A	15
Leaf and root	Withanolide-A, withanone, withaferin A, withastramonolide, 27-hydroxywithanone, withanoside, physagulin	16
Root	Phenolic compounds, flavonoids, coumarins tannins, saponins, protein, steroid glycosides, alkaloids, reducing sugars	17

Fig. 2. The neuroprotective functions of *W. somnifera* in regulating different molecular events in stroke. Regulation of different biomolecules by *W. somnifera* in stroke leads to (a) a reduction in mortality and cognitive impairment, (b) an increase in neuroplasticity, post-stroke recovery, and motor functions, (c) a reduction in oxidative stress, inflammation, apoptosis, neuronal cell death, and vascular permeability, and improved neurovascular unit functions, (d) a reduction in mitochondrial dysfunction, and (e) restricted hemorrhagic conversion and neutrophil infiltration in the infarct region. The symbols “↑” and “↓” represent “high” and “low,” respectively. AChE, acetylcholinesterase; BBB, blood-brain barrier; GABA, gamma-aminobutyric acid; HO-1, heme oxygenase 1; MMP, matrix metalloproteinase; PARP-1, poly(ADP-ribose) polymerase-1; Sema3A, semaphorin-3A.

Fig. 3. Regulation of different molecular mechanisms by *W. somnifera* to decrease neuronal loss and increase neural plasticity. The symbols “↑” and “↓” represent “high” and “low,” respectively. BDNF, brain-derived neurotrophic factor; KLK8, kallikrein 8; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; MAP2, microtubule-associated protein 2; MAPK, mitogen-activated protein kinase; NMDA, N-methyl-D-aspartate; PI3K/Akt, phosphoinositide 3-kinase/protein kinase B; Smad2, mothers against decapentaplegic homolog 2; SIRT1, sirtuin 1; TGF- β 1, transforming growth factor beta 1.

and carotid atherosclerosis.³⁰ Conversely, PARP-1 is significant in the progression of ischemic stroke and cell death, suggesting that targeting PARP-1 could be a promising therapeutic approach for post-stroke neurodegeneration.³¹ Furthermore, the vascular permeability factor Sema3A is vital for neuroprotection by regulating immune responses and angiogenesis following ischemic stroke.³² Mice pre-supplemented with the root extract of *W. somnifera* demonstrate a reduction in tissue inflammation and an increase in neurotransmitters such as serotonin, dopamine, norepinephrine, and GABA after MCAO.³³ In this context, the modulation of inhibitory neurotransmitters such as GABA is essential for neuronal plasticity and post-stroke recovery.³⁴ Additionally, serotonergic and dopaminergic medications are utilized to enhance motor functions following a stroke.³⁵ Pretreatment with a hydroalcoholic extract of *W. somnifera* in Wistar rats over a period of 30 days results in significant improvements in motor function and a decrease in malondialdehyde levels two hours after MCAO.³⁶ Reports indicate that rats pre-supplemented with *W. somnifera* (300 mg/kg body weight) maintain normal AChE levels, increase thiols, alleviate neurobehavioral deficits, and reduce lipid peroxidation following MCAO.³⁷ In this context, elevated levels of AChE correlate with increased mortality rates in stroke patients and those experiencing post-stroke cognitive decline.³⁸ Thiols serve as cellular antioxidant defense molecules. A decrease in thiol levels leads to heightened oxidative stress, which is linked to the severity of post-stroke conditions.³⁹ Neurobehavioral deficits refer to dysfunctions in locomotor abilities typically observed following cerebral ischemia-reperfusion injury (hereinafter referred to as I/R injury). Likewise, an increase in lipid peroxidation has been documented in both the ipsilateral and contralateral hemispheres of the brain after MCAO.⁴⁰ Sood et al.⁴¹ have shown that pre-supplementation with *W. somnifera* in MCAO models may alleviate mitochondrial dysfunction, apoptosis, oxidative stress, and cognitive deficits.

The liposomal delivery of the ethanolic root extract from the *W. somnifera* chemotype variety NMITLI-118 exhibits neuroprotective properties against I/R injury following MCAO.⁴² An *in silico* study conducted by Kumar et al.⁴³ shows that 28 out of 36 phytochemicals derived from *W. somnifera* inhibit binding to the catalytic domain of matrix metalloproteinases, specifically MMP-2 and MMP-9. However, this needs to be validated using *in vivo* experiments. In rodent models, it has been reported that MMP-9 expression peaks during the acute phase of stroke, while MMP-2 expression is elevated in the later stages post-stroke. The heightened levels of MMP-2 and MMP-9 are associated with disruption of the blood-brain barrier.⁴⁴ Furthermore, MMP-9 is linked to hemorrhagic transformation and neutrophil infiltration within the infarct area.²³

W. somnifera and functional recovery of neurons

Cerebral ischemia results in immediate tissue loss in the area affected by stroke, a phenomenon known as infarction. Furthermore, secondary neurodegeneration develops over time due to the ongoing tissue loss in regions connected to the infarct area. Following a stroke, neurons experience stress from inflammation, ischemia, and excitotoxicity. The pathophysiology of stroke onset involves the release of molecules such as ATP and phosphatidylserine, and the binding of complement components (C1q and C3b), along with microglia, to stressed neurons. Consequently, microglial phagocytosis is linked to neuronal loss following a stroke.⁴⁵ In this context, *W. somnifera* has been reported to be advantageous in protecting neurons and mitigating neuronal loss (Fig. 3). Research conducted on human neuroblastoma cells (SH-SY5Y) indicates that the root extract of *W. somnifera* (20 μ g/mL) is effective in reducing apoptotic markers (annexin V), terminal cell death parameters such as lactate dehydrogenase, and cell death markers such as Bax (Bcl-2-like protein 4).⁴⁶ A study performed on the brains of rats

with Parkinson's disease demonstrates that the root extract of *W. somnifera* leads to a decrease in inflammation, oxidative stress, and microglial activity, ultimately resulting in reduced neuronal degeneration in the cerebral cortex.⁴⁷ The excessive production of glutamate, an excitatory neurotransmitter, in the brain leads to glutamate excitotoxicity following a stroke, which significantly contributes to neuronal damage and cell death.⁴⁸ In this context, a study performed on a rat model of Alzheimer's disease indicates that the aqueous extract of *W. somnifera* root may offer protection against neurotoxicity induced by glutamate and prevent neuronal loss in the cerebral cortex and hippocampal regions.⁴⁹ It has been reported that the aqueous extract of *W. somnifera* leaf, along with its active fractions, is advantageous for synaptic plasticity and the survival of neuronal cells against neuroinflammation and neurodegeneration caused by bacterial lipopolysaccharide. Furthermore, it mitigates apoptotic cell death in neurons and promotes the restoration of neurite outgrowth.⁵⁰ However, a nanoemulsion could be developed to enhance the delivery of the leaf extract across the blood-brain barrier. TGF- β 1 and Smad2 are crucial in the pathogenesis of acute and post-stroke conditions, as these molecules are essential for regulating neuroinflammation, microglial activation, and angiogenesis.⁵¹ In this context, the nanoemulsion of *W. somnifera* leaf extract may be vital in downregulating the TGF- β 1 and Smad2 signaling pathways to safeguard against neuronal damage and apoptosis.⁵² The accumulation of β -amyloid in the brain is regarded as neurotoxic, leading to neuronal loss.⁵³ It is hypothesized that cerebral ischemia contributes to the buildup of β -amyloid in the brain.⁵⁴ In this context, the methanol:chloroform (3:1) root extract of *W. somnifera* has been reported to counteract β -amyloid-induced neurotoxicity in human neuronal SK-N-MC cells.²⁵ Corticosterone is known to induce neuronal cell death during cerebral ischemia.⁵⁵ Reports indicate that the root extract of *W. somnifera* is effective in protecting against corticosterone-induced neuronal cell death by upregulating the expression of brain-derived neurotrophic factor (hereinafter referred to as BDNF) and SIRT1, which leads to mitochondrial biogenesis and enhances neuroenergetics.⁵⁶ It has been demonstrated in a mouse model that withanolide A, isolated from *W. somnifera*, promotes synaptic reconstruction in neurons and facilitates the regeneration of axons and dendrites.⁵⁷ The leaf extract of *W. somnifera* has been reported to play a role in neuroregeneration and memory recovery in a mouse model. Research indicates that the *W. somnifera* leaf extract enhances KLK8 and MAP2 levels, thereby promoting dendritic growth, which is crucial for receiving signals from other neurons.⁵⁸ The inhibition of the PI3K/Akt pathway is linked to neuronal cell death. In this context, withanolide A activates the PI3K/Akt pathway while inhibiting mitogen-activated protein kinases, leading to neuroprotection.⁵⁹ Under normal physiological conditions, glutamate plays a crucial role in neural development and synaptic plasticity. However, excessive release and accumulation of glutamate can activate the N-methyl-D-aspartate (NMDA) receptor. NMDA is a postsynaptic receptor that induces excitotoxicity through lipid peroxidation, ultimately resulting in neuronal cell death. In this regard, withanolide A has been reported to mitigate NMDA-induced excitotoxicity in neuron-like cells.⁶⁰

Limitations and future research directions

Extensive research indicates that phytochemicals derived from various parts of *W. somnifera* are effective in reducing neuronal death and promoting neuroprotection by modifying various cellular and physiological processes. However, these investigations have

primarily been carried out through *in vitro*, *in silico*, and *in vivo* methodologies. Consequently, the effects of *W. somnifera* phytochemicals must be experimentally validated in humans to improve therapeutic efficacy. Therefore, it is essential to conduct clinical trials with large cohorts to establish a safe dosage of *W. somnifera* phytochemicals for human use. Additionally, *in vivo* studies and behavioral experiments must be performed to elucidate functional recovery metrics, disability, quality of life, recurrent stroke, mortality, and other related factors. Furthermore, future research is necessary to investigate the physiological pathways targeted by *W. somnifera* to enhance the understanding of post-stroke recovery.

Conclusions

The rising mortality rates associated with stroke and the subsequent neuronal loss are significant concerns for healthcare professionals. This study illustrates how the neuroprotective properties of *W. somnifera* can facilitate recovery after a stroke. A thorough review of the literature and analysis indicates that *W. somnifera* is instrumental in enhancing post-stroke recovery. Extracts from various parts of the plant, including fruits, flowers, roots, and leaves, are rich in diverse bioactive compounds. The neuroprotective effects of *W. somnifera* may aid in post-stroke recovery by mitigating neuroinflammation, apoptosis, and oxidative stress. Furthermore, *W. somnifera* may enhance post-stroke recovery by reducing mitochondrial dysfunction and neuronal loss, and by promoting neuronal plasticity. Additionally, it may contribute to increased neurotransmitter levels and improved motor functions. The plant also protects the infarct area from neutrophilic infiltration. Utilizing *W. somnifera* may enhance memory and functional recovery following a stroke. *W. somnifera* may play a significant role in mitochondrial biogenesis and neuroregeneration. Therefore, it is essential to determine the target-specific effects of *W. somnifera* on HO-1, BDNF, SIRT1, KLK8, and MAP2. Additionally, future research at the molecular level and clinical trials are recommended to investigate the biological pathways influenced by the active compounds in *W. somnifera*.

Acknowledgments

None.

Funding

None.

Conflict of interest

No potential conflict of interest was reported by the authors.

Author contributions

Conceptualization, data curation, study design, data compilation, interpretation, original draft writing, formatting, editing and review (SS, AD, MS), original draft editing and review (RPS, SC, AS, SKS). All authors have approved the final version and publication of the manuscript.

References

[1] Salaudeen MA, Bello N, Danraka RN, Ammani ML. Understanding

the Pathophysiology of Ischemic Stroke: The Basis of Current Therapies and Opportunity for New Ones. *Biomolecules* 2024;14(3):305. doi:10.3390/biom14030305, PMID:38540725.

[2] Feigin VL, Brainin M, Norrving B, Martins SO, Pandian J, Lindsay P, et al. World Stroke Organization: Global Stroke Fact Sheet 2025. *Int J Stroke* 2025;20(2):132–144. doi:10.1177/17474930241308142, PMID:39635884.

[3] Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, et al. Stroke: Molecular mechanisms and therapies: Update on recent developments. *Neurochem Int* 2023;162:105458. doi:10.1016/j.neuint.2022.105458, PMID:36460240.

[4] Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. *Signal Transduct Target Ther* 2022;7(1):215. doi:10.1038/s41392-022-01064-1, PMID:35794095.

[5] Chohan SA, Venkatesh PK, How CH. Long-term complications of stroke and secondary prevention: an overview for primary care physicians. *Singapore Med J* 2019;60(12):616–620. doi:10.11622/smedj.2019158, PMID:31889205.

[6] Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke* 2019;50(12):e344–e418. doi:10.1161/STR.0000000000000211.

[7] Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, et al. The role of traditional herbal medicine for ischemic stroke: from bench to clinic—A critical review. *Phytomedicine* 2023;109:154609. doi:10.1016/j.phymed.2022.154609, PMID:36610141.

[8] Leroose V, Ponticelli M, Benedetto N, Carlucci V, Lela L, Tzvetkov NT, et al. *Withania somnifera* (L.) Dunal, a Potential Source of Phytochemicals for Treating Neurodegenerative Diseases: A Systematic Review. *Plants (Basel)* 2024;13(6):771. doi:10.3390/plants13060771, PMID:38592845.

[9] Alzoubi KH, Al Hilo AS, Al-Balas QA, El-Salem K, El-Elimat T, Alali FQ. *Withania somnifera* root powder protects against post-traumatic stress disorder-induced memory impairment. *Mol Biol Rep* 2019;46(5):4709–4715. doi:10.1007/s11033-019-04915-3, PMID:31218539.

[10] Mikulska P, Malinowska M, Ignacyk M, Szustowski P, Nowak J, Pesta K, et al. Ashwagandha (*Withania somnifera*)-Current Research on the Health-Promoting Activities: A Narrative Review. *Pharmaceutics* 2023;15(4):1057. doi:10.3390/pharmaceutics15041057, PMID:37111543.

[11] Ng QX, Loke W, Foo NX, Tan WJ, Chan HW, Lim DY, et al. A systematic review of the clinical use of *Withania somnifera* (Ashwagandha) to ameliorate cognitive dysfunction. *Phytother Res* 2020;34(3):583–590. doi:10.1002/ptr.6552, PMID:31742775.

[12] Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SNA. *Withania somnifera* L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. *Iran J Basic Med Sci* 2020;23(12):1501–1526. doi:10.22038/IJBS.2020.44254.10378, PMID:33489024.

[13] Guo S, Rezaei MJ. The benefits of ashwagandha (*Withania somnifera*) supplements on brain function and sports performance. *Front Nutr* 2024;11:1439294. doi:10.3389/fnut.2024.1439294, PMID:39155932.

[14] Uddin Q, Samiulla L, Singh VK, Jamil SS. Phytochemical and pharmacological profile of *Withania somnifera* Dunal: A review. *J Appl Pharm Sci* 2012;2(1):170–175.

[15] Kumar R, Garipatti V, Hazra K, Mangal AK, Sannd R. Preliminary phytochemical evaluation of root of natural grown *Withania somnifera* of northern part of India. *Int J Pharmacogn Phytochem Res* 2013;5(1):15–18.

[16] Dhanani T, Shah S, Gajbhiye NA, Kumar S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of *Withania somnifera*. *Arab J Chem* 2017;10(Suppl 1):S1193–S1199. doi:10.1016/j.arabjc.2013.02.015.

[17] Dhar RS, Verma V, Suri KA, Sangwan RS, Satti NK, Kumar A, et al. Phytochemical and genetic analysis in selected chemotypes of *Withania somnifera*. *Phytochemistry* 2006;67(20):2269–2276. doi:10.1016/j.phytochem.2006.07.014, PMID:16956635.

[18] Dar NJ, Gull B, Hamid A, Ahmed Z, Ahmad M. *Withaferin-A* kills neuronal cells: An off-putting facet of *Withania somnifera* as a neuroprotectant. *Steroids* 2025;222:109662. doi:10.1016/j.steroids.2025.109662, PMID:40695418.

[19] Prabu PC, Panchapakesan S, Raj CD. Acute and sub-acute oral toxicity assessment of the hydroalcoholic extract of *Withania somnifera* roots in Wistar rats. *Phytother Res* 2013;27(8):1169–1178. doi:10.1002/ptr.4854, PMID:22996349.

[20] Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. *Int J Mol Sci* 2020;21(20):7609. doi:10.3390/ijms21207609, PMID:33076218.

[21] Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, et al. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. *Cytokine Growth Factor Rev* 2023;74:122–133. doi:10.1016/j.cytofr.2023.07.005, PMID:37573252.

[22] Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. *Curr Neuropharmacol* 2020;18(12):1187–1212. doi:10.2174/1570159X18666200528143301, PMID:32484111.

[23] Dong X, Song YN, Liu WG, Guo XL. Mmp-9, a potential target for cerebral ischemic treatment. *Curr Neuropharmacol* 2009;7(4):269–275. doi:10.2174/157015909790031157, PMID:20514206.

[24] Vinotha S, Thabrew I, Sri Ranjani S. Phytochemical screening of various extracts of root of *Withania Somnifera* (L) Dunal. *Arch Bus Res* 2015;3(2):179–187. doi:10.14738/abr.32.823.

[25] Kurapati KR, Atluri VS, Samikkannu T, Nair MP. Ashwagandha (*Withania somnifera*) reverses β -amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). *PLoS One* 2013;8(10):e77624. doi:10.1371/journal.pone.0077624, PMID:24147038.

[26] Stoica BA, Loane DJ, Zhao Z, Kabadi SV, Hanscom M, Byrnes KR, et al. PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. *J Neurotrauma* 2014;31(8):758–772. doi:10.1089/neu.2013.3194, PMID:24476502.

[27] Zahiruddin S, Basist P, Parveen A, Parveen R, Khan W, Gaurav, et al. Ashwagandha in brain disorders: A review of recent developments. *J Ethnopharmacol* 2020;257:112876. doi:10.1016/j.jep.2020.112876, PMID:32305638.

[28] Raghavan A, Shah ZA. *Withania somnifera* Improves Ischemic Stroke Outcomes by Attenuating PARP1-AIF-Mediated Caspase-Independent Apoptosis. *Mol Neurobiol* 2015;52(3):1093–1105. doi:10.1007/s12035-014-8907-2, PMID:25294638.

[29] Berezczki D Jr, Balla J, Berezczki D. Heme Oxygenase-1: Clinical Relevance in Ischemic Stroke. *Curr Pharm Des* 2018;24(20):2229–2235. doi:10.2174/1381612824666180717101104, PMID:30014798.

[30] Ishizaka N, Ishizaka Y, Takahashi E, Yamakado M, Hashimoto H. High serum bilirubin level is inversely associated with the presence of carotid plaque. *Stroke* 2001;32(2):580–583. doi:10.1161/01.str.32.2.580-2, PMID:11157203.

[31] Liu S, Luo W, Wang Y. Emerging role of PARP-1 and PARthanatos in ischemic stroke. *J Neurochem* 2022;160(1):74–87. doi:10.1111/jnc.15464, PMID:34241907.

[32] Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. *Front Mol Neurosci* 2022;15:848506. doi:10.3389/fnmol.2022.848506, PMID:35350431.

[33] Sood A, Mehrotra A, Dhawan DK, Sandhir R. Neuroprotective effects of *Withania somnifera* on ischemic stroke are mediated via anti-inflammatory response and modulation of neurotransmitter levels. *Neurochem Int* 2024;180:105867. doi:10.1016/j.neuint.2024.105867, PMID:39349219.

[34] Perovic M, Pavlovic D, Palmer Z, Udo MSB, Citadin CT, Rodgers KM, et al. Modulation of GABAergic system as a therapeutic option in stroke. *Exp Neurol* 2025;384:115050. doi:10.1016/j.expneurol.2024.115050, PMID:39522803.

[35] Cramer SC. Drugs to Enhance Motor Recovery After Stroke. *Stroke* 2015;46(10):2998–3005. doi:10.1161/STROKEAHA.115.007433, PMID:26265126.

[36] Chaudhary G, Sharma U, Jagannathan NR, Gupta YK. Evaluation of

Withania somnifera in a middle cerebral artery occlusion model of stroke in rats. *Clin Exp Pharmacol Physiol* 2003;30(5-6):399–404. doi:10.1046/j.1440-1681.2003.03849.x, PMID:12859433.

[37] Sood A, Kumar A, Dhawan DK, Sandhir R. Propensity of Withania somnifera to Attenuate Behavioural, Biochemical, and Histological Alterations in Experimental Model of Stroke. *Cell Mol Neurobiol* 2016;36(7):1123–1138. doi:10.1007/s10571-015-0305-4, PMID:26718711.

[38] Chen YC, Chou WH, Fang CP, Liu TH, Tsou HH, Wang Y, et al. Serum Level and Activity of Butyrylcholinesterase: A Biomarker for Post-Stroke Dementia. *J Clin Med* 2019;8(11):1778. doi:10.3390/jcm8111778, PMID:31653081.

[39] Bektas H, Ural G, Gümüşayla S, Deniz O, Alisik M, Erel O. Dynamic thiol-disulfide homeostasis in acute ischemic stroke patients. *Acta Neurol Belg* 2016;116(4):489–494. doi:10.1007/s13760-016-0598-1, PMID:26782823.

[40] Thiagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. *Life Sci* 2004;74(8):969–985. doi:10.1016/j.lfs.2003.06.042, PMID:14672754.

[41] Sood A, Mehrotra A, Dhawan DK, Sandhir R. Indian Ginseng (Withania somnifera) supplementation ameliorates oxidative stress and mitochondrial dysfunctions in experimental model of stroke. *Metab Brain Dis* 2018;33(4):1261–1274. doi:10.1007/s11011-018-0234-2, PMID:29671210.

[42] Ahmad H, Khandelwal K, Samuel SS, Tripathi S, Mitra K, Sangwan RS, et al. Neuro-protective potential of a vesicular system of a standardized extract of a new chemotype of Withania somnifera Dunal (NMIT-LI118RT+) against cerebral stroke in rats. *Drug Deliv* 2016;23(7):2630–2641. doi:10.3109/10717544.2015.1041579, PMID:26017242.

[43] Kumar G, Patnaik R. Inhibition of Gelatinases (MMP-2 and MMP-9) by Withania somnifera Phytochemicals Confers Neuroprotection in Stroke: An In Silico Analysis. *Interdiscip Sci* 2018;10(4):722–733. doi:10.1007/s12539-017-0231-x, PMID:28488219.

[44] Planas AM, Solé S, Justicia C. Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. *Neurobiol Dis* 2001;8(5):834–846. doi:10.1006/nbdi.2001.0435, PMID:11592852.

[45] Brown GC. Neuronal Loss after Stroke Due to Microglial Phagocytosis of Stressed Neurons. *Int J Mol Sci* 2021;22(24):13442. doi:10.3390/ijms222413442, PMID:34948237.

[46] Saykally JN, Hatic H, Keeley KL, Jain SC, Ravindranath V, Citron BA. Withania somnifera Extract Protects Model Neurons from In Vitro Traumatic Injury. *Cell Transplant* 2017;26(7):1193–1201. doi:10.1177/0963689717714320, PMID:28933215.

[47] Epuri V, Prathap L, Reddy V, Krishnan M. Anti oxidative/neuro-inflammation properties of Withania somnifera root extract on rotenone induced stress in rat brain. *Bioinformation* 2023;19(6):729–738. doi:10.6026/97320630019729, PMID:37885788.

[48] Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, et al. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. *Biomed Pharmacother* 2022;151:113125. doi:10.1016/j.biopharma.2022.113125, PMID:35609367.

[49] Visweswari G, Christopher R, Rajendra W. Withania Somnifera against glutamate excitotoxicity and neuronal cell loss in a scopolamine-induced rat model of Alzheimer's disease. *European Journal of Biological Research* 2021;11(2):156–167. doi:10.5281/zenodo.4426779.

[50] Gupta M, Kaur G. Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation. *BMC Complement Altern Med* 2019;19(1):217. doi:10.1186/s12906-019-2635-0, PMID:31416451.

[51] Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V, et al. Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF- β /Smad2/3 pathway. *Cell Death Dis* 2021;12(11):1068. doi:10.1038/s41419-021-04363-7, PMID:34753919.

[52] Abomosallam M, Hendam BM, Abdallah AA, Refaat R, El-Hak HNG. Neuroprotective effect of Withania somnifera leaves extract nanoe-mulsion against penconazole-induced neurotoxicity in albino rats via modulating TGF- β 1/Smad2 signaling pathway. *Inflammopharmacology* 2024;32(3):1903–1928. doi:10.1007/s10787-024-01461-8, PMID:38630361.

[53] O'Connell A, Quinlan L, Kwakowsky A. β -amyloid's neurotoxic mechanisms as defined by in vitro microelectrode arrays: a review. *Pharmacol Res* 2024;209:107436. doi:10.1016/j.phrs.2024.107436, PMID:39369863.

[54] Ouyang F, Jiang Z, Chen X, Chen Y, Wei J, Xing S, et al. Is Cerebral Amyloid- β Deposition Related to Post-stroke Cognitive Impairment? *Transl Stroke Res* 2021;12(6):946–957. doi:10.1007/s12975-021-00921-5, PMID:34195928.

[55] Rami A, Rabié A, Winckler J. Synergy between chronic corticosterone treatment and cerebral ischemia in producing damage in noncalbindinergic neurons. *Exp Neurol* 1998;149(2):439–446. doi:10.1006/exnr.1997.6729, PMID:9500960.

[56] Fanibunda SE, Kukkemane K, Ghai U, Kolthur-Seetharam U, Hingorani L, Vaidya ADB, et al. Withania somnifera Regulates Mitochondrial Biogenesis and Energetics in Rat Cortical Neurons: Role of BDNF and SIRT1. *Mol Neurobiol* 2025;62(8):10277–10295. doi:10.1007/s12035-025-04920-7, PMID:40199807.

[57] Kuboyama T, Tohda C, Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. *Br J Pharmacol* 2005;144(7):961–971. doi:10.1038/sj.bjp.0706122, PMID:15711595.

[58] Konar A, Gupta R, Shukla RK, Maloney B, Khanna VK, Wadhwa R, et al. M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. *Sci Rep* 2019;9(1):13990. doi:10.1038/s41598-019-48238-6, PMID:31570736.

[59] Dar NJ, Satti NK, Dutt P, Hamid A, Ahmad M. Attenuation of Glutamate-Induced Excitotoxicity by Withanolide-A in Neuron-Like Cells: Role for PI3K/Akt/MAPK Signaling Pathway. *Mol Neurobiol* 2018;55(4):2725–2739. doi:10.1007/s12035-017-0515-5, PMID:28447311.

[60] Dar NJ, Bhat JA, Satti NK, Sharma PR, Hamid A, Ahmad M. Withanolone, an Active Constituent from Withania somnifera, Affords Protection Against NMDA-Induced Excitotoxicity in Neuron-Like Cells. *Mol Neurobiol* 2017;54(7):5061–5073. doi:10.1007/s12035-016-0044-7, PMID:27541286.